365 research outputs found

    Geometry of compact tubes and protein structures

    Get PDF
    Proteins form a very important class of polymers. In spite of major advances in the understanding of polymer science, the protein problem has remained largely unsolved. Here, we show that a polymer chain viewed as a tube not only captures the well-known characteristics of polymers and their phases but also provides a natural explanation for many of the key features of protein behavior. There are two natural length scales associated with a tube subject to compaction -- the thickness of the tube and the range of the attractive interactions. For short tubes, when these length scales become comparable, one obtains marginally compact structures, which are relatively few in number compared to those in the generic compact phase of polymers. The motifs associated with the structures in this new phase include helices, hairpins and sheets. We suggest that Nature has selected this phase for the structures of proteins because of its many advantages including the few candidate strucures, the ability to squeeze the water out from the hydrophobic core and the flexibility and versatility associated with being marginally compact. Our results provide a framework for understanding the common features of all proteins.Comment: 15 pages, 3 eps figure

    Determination of Interaction Potentials of Amino Acids from Native Protein Structures: Test on Simple Lattice Models

    Full text link
    We propose a novel method for the determination of the effective interaction potential between the amino acids of a protein. The strategy is based on the combination of a new optimization procedure and a geometrical argument, which also uncovers the shortcomings of any optimization procedure. The strategy can be applied on any data set of native structures such as those available from the Protein Data Bank (PDB). In this work, however, we explain and test our approach on simple lattice models, where the true interactions are known a priori. Excellent agreement is obtained between the extracted and the true potentials even for modest numbers of protein structures in the PDB. Comparisons with other methods are also discussed.Comment: 24 pages, 4 figure

    Subgraphs and network motifs in geometric networks

    Full text link
    Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic datasets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all 3 and 4-node subgraphs, in both directed and non-directed geometric networks. We also analyze geometric networks with arbitrary degree sequences, and models with a field that biases for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.Comment: 9 pages, 6 figure

    Proteins and polymers

    Full text link
    Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for polymer melts, holds for compact protein native state structures and is not incompatible with the existence of structured building blocks such as α\alpha-helices and β\beta-strands. We present a discussion on how the notion of the thickness of a polymer chain, besides being useful in describing a chain molecule in the continuum limit, plays a vital role in interpolating between conventional polymer physics and the phase of matter associated with protein structures.Comment: 7 pages, 6 figure

    Origin of Nonuniversality in Micellar Solutions: Comment

    Get PDF
    Rhynchospora caucasica Palla (Cyperaceae) Doğu Karadeniz'de, Rize'den tespit edilmiş ve Türkiye florası için yeni bir tür kaydı olarak verilmiştir. Taksonun betimi ve coğrafik dağılımı belirtilmiş, yakın akrabaları olan R. rugosa (Vahl) Gale subsp. rugosa ve R. rugosa (Vahl) Gale subsp. brownii (Roemer & Schultes) T.Koyama taksonları ile karşılaştırılmıştırR. caucasica Palla (Cyperaceae) is reported as a new record for Turkish flora in Rize province, NE Anatolia, Turkey. The description and distribution of the species are given. Also, it is compared with related taxa R. rugosa (Vahl) Gale subsp. rugosa and R. rugosa subsp. brownii (Roemer & Schultes) T. Koyam

    Some asymptotic properties of duplication graphs

    Full text link
    Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of biological networks, including protein-protein interaction networks and gene regulatory networks. Three models of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three models. However, the parameter space of the latter two models is characterized by a range of parameter values for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this ``duplication-dominated'' regime, it is shown that the degree distribution either approaches zero asymptotically, or approaches a non-zero power-law degree distribution very slowly. In either case, the approach to the true asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties studied.Comment: 19 pages, including 3 figure
    corecore